Français - English - Intranet
Unité Matériaux et Transformations empty space

Unité Matériaux et Transformations
CNRS UMR 8207 - Université de Lille

UMET - Sample scientific grants

ANR GauguIn

ANR GauguIn

2019-2023

L’objectif de ce projet est de faire une avancée majeure sur la compréhension des mécanismes de fragilisation par les métaux liquides (FML). Cette recherche sera effectuée sur un système modèle, des laitons CFC à teneur variable en Zn, en contact avec du Ga-In liquide. Des essais mécaniques in-situ (AFM, MET, MEB) permettront d’observer jusqu’à une échelle nanoscopique la manifestation de la FML. Une analyse critique des phénomènes basée sur la compétition entre l’émission de dislocations et la rupture fragile en présence de métal liquide permettra une modélisation phénoménologique, quantitative et prédictive de la FML. Ce projet, porté par l’UMET, regroupe 4 laboratoires : Unité Matériaux et Transformations (UMET), Procédés et Ingénierie en Mécanique et Matériaux (PIMM), Institut de Chimie et des Matériaux Paris-Est (ICMPE), Laboratoire de Mécanique des Sols, Structures et Matériaux (MSSMAT).

 
ERC Advanced Grant TimeMan, Rheology of Earth materials: closing the gap between TIME scales in the laboratory and in the MANtle

ERC Advanced Grant TimeMan, Rheology of Earth materials: closing the gap between TIME scales in the laboratory and in the MANtle

2018-2023

Most large-scale geological process such as plate tectonics or mantle convection involve plastic deformation of rocks. With most recent developments, constraining their rheological properties at natural strain-rates is something we can really achieve in the decade to come. Presently, these theological properties are described with empirical equations which are fitted on macroscopic, average properties, obtained in laboratory experiments performed at human timescales. Their extrapolation to Earth’s conditions over several orders of magnitude is highly questionable as demonstrated by recent comparison with surface geophysical observables. Strain rates couple space and time. We cannot expand time, but we can now reduce length scales. By using the new generation of nanomechanical testing machines in transmission electron microscopes, we can have access to elementary deformation mechanisms and, more importantly, we can measure the key physical parameters which control their dynamics. At this scale, we can have access to very slow mechanisms which were previously out of reach. This approach can be complemented by numerical modelling. By using the recent developments in modelling the so-called “rare events”, we will be able to model mechanisms in the same timescales as nanomechanical testing. By combining, nanomechanical testing and advanced numerical modelling of elementary processes I propose to elaborate a new generation of rheological laws, based on the physics of deformation, which will explicitly involve time (i.e. strain rate) and will require no extrapolation to be applied to natural processes. Applied to olivine, the main constituent of the upper mantle, this will provide the first robust, physics-based rheological laws for the lithospheric and asthenospheric mantle to be compared with surface observables and incorporated in geophysical convection models.

 
RUSTINE (FUI) - Recyclage par extrUSion assisTée fluIde pour la valorisatioN de déchEts polymères

RUSTINE (FUI) - Recyclage par extrUSion assisTée fluIde pour la valorisatioN de déchEts polymères

2018-2022

Le projet RUSTINE (Recyclage par extrUSion assisTée fluIde pour la valorisatioN de déchEts polymères) est un projet de recherche et développement collaboratif associant 4 entreprises (GALLOO PLASTICS, WIPAK, NUTRIPACK ET PSA) et 2 laboratoires académiques (UMET et ARMINES) dont l’objectif est le développement d’un procédé de décontamination de déchets plastiques issus de différentes filières. Le procédé qui sera étudié et développé au cours du projet est un procédé d’extrusion assistée fluides. Il s’agira d’identifier les paramètres clé qui régissent la dépollution sans dégrader le polymère. Le procédé sera étudié à différentes échelles : laboratoire, pilote et industrielle. L’enjeu global du projet RUSTINE consistera à produire un matériau recyclé répondant aux cahiers des charges des utilisateurs finaux à savoir le domaine de l’automobile et/ou de l’emballage alimentaire afin de contribuer à l’augmentation du taux de valorisation des plastiques recyclés. Le polymère ciblé dans le projet RUSTINE est le PolyPropylène (PP) largement utilisé dans le domaine alimentaire et dont les volumes collectés devraient augmenter avec la mise en place généralisé de l’extension des consignes de tri. La possibilité de proposer un PP recyclé, décontaminé alimentaire et/ou sans odeurs permettrait le développement d’une filière de valorisation du PP à haute valeur ajoutée et aurait pour effet un accroissement de la demande et un retour au choix de l’emballage PP pour certains acteurs enclins à s’orienter vers d’autres matériaux.

 
INTERREG GRASS - Gazons aRtificiels Anti-feu Sûrs et durableS

INTERREG GRASS - Gazons aRtificiels Anti-feu Sûrs et durableS

2018-2022

L'objectif du projet GRASS est de sensibiliser le public à la différence de comportement au feu entre gazon naturel et gazon artificiel et d'améliorer celui du gazon artificiel par le développement de procédés innovants, respectueux de l'environnement et applicables industriellement. Dans ce projet, on organisera une interaction constante avec un groupe de résonance au sein duquel installateurs, clubs sportifs, autorités et utilisateurs finaux sont représentés aux côtés des producteurs. L'implication de ce groupe de résonance offre la garantie que les innovations techniques issues de ce projet seront acceptables pour tous les acteurs du secteur des gazons synthétique - de la production à l'utilisation et jusqu'au recyclage - et seront mises en pratique.

 
ANR CLASSY

ANR CLASSY

2018-2022

Our Solar System is the only planetary system that can be thoroughly explored by spacecrafts and by the analysis of planetary samples in the laboratory. It provides a unique glance at the mechanisms leading to stars and planets formation, a vision that is complementary to that derived from remote observations of nascent planetary systems. CLASSY aims at conducting experiments aimed at interpreting the spectral data from the ROSETTA, DAWN and NEW HORIZONS space missions. We will study experimentally the effects of the first stages of space weathering (ions irradiation) on the VNIR spectra of dark analogs, and investigate the composition and textural parameters that control VNIR spectra through multi-angular radio-spectro-goniometric measurements on sub-micrometric organics-minerals assemblages.

 
Interreg Allihentrop - Synthèse et mise en œuvre de revêtements à base d'ALLIages à Haute ENTROPie

Interreg Allihentrop - Synthèse et mise en œuvre de revêtements à base d'ALLIages à Haute ENTROPie

2018-2022

Le projet ALLIHENTROP est porté par un consortium transfrontalier constitué de Materia Nova et du CRIBC (Mons) pour la Belgique, ainsi que du LAMIH (Université Polytechnique Hauts-de-France) et de l’UMET (Université de Lille) pour la région des Hauts de France. ALLIHENTROP propose de développer des revêtements à hautes performances (en termes de dureté, résistance au frottement, ductilité, tenue en température et résistance à la corrosion) formés d’Alliages à Haute Entropie (HEA). Le but est d'apporter une fonctionnalité à une pièce métallique, ou d'en améliorer les performances, et de valoriser ainsi des matériaux supports ou structurels à faible valeur ajoutée. Les méthodes de dépôt sont conçues de manière à être compatibles avec les processus de production industriels. La synthèse et la mise en forme de ces matériaux, ainsi que l'évaluation de leurs performances, requièrent une approche pluridisciplinaire faisant appel à des spécialistes de la modélisation, de la synthèse d’alliages complexes, des dépôts en couches de diverses épaisseurs et des caractérisations physico-chimiques.

 
ANR MISMATCH -- MultIfunctional and Multi-sTimuli responsive Hydrogels

ANR MISMATCH -- MultIfunctional and Multi-sTimuli responsive Hydrogels

2018-2022

Le projet concerne l’élaboration d’hydrogels « intelligents » multi-stimulables et multifonctionnels. L’intérêt de l’approche supramoléculaire préconisée est, qu’en fonction du stimulus ou des stimuli appliqué(s), le matériau pourra répondre différemment et être utilisé pour différentes applications. Dans le cadre de ce projet, ces matériaux trouveront des applications plus particulièrement en tant que senseurs et/ou actuateurs.

 
ANR ECONOMICS

ANR ECONOMICS

2017-2021

L’encrassement des surfaces des échangeurs de chaleur par des dérivés laitiers et ovo-produits constitue un risque sanitaire sévère. La modification de l'état de surface des échangeurs devrait permettre de limiter l'encrassement, mais aucune solution satisfaisante n'a été mise au point pour le moment. Le challenge du projet ECONOMICS est d'élaborer des surfaces et matériaux qui présentent à la fois une bonne compatibilité alimentaire, des propriétés anti-encrassantes et qui résistent aux procédures de nettoyage. La première voie consistera à fonctionnaliser l'acier inoxydable par des revêtements de faible rugosité et faible énergie de surface adhérents à l'acier inoxydable, de type : dépôt assisté par plasma atmosphérique, peintures auto-stratifiantes et revêtements sol-gel nanotexturés. La seconde voie consistera à remplacer l'acier inoxydable par des matériaux hydrophobes à base de carbone (composites carbone vitreux-graphite à énergie de surface et porosité contrôlées, composites hydrophobes à base de mousses de graphite, et carbone mésoporeux superhydrophobe à porosité contrôlée) de façon à réduire l'encrassement tout en améliorant l'efficacité énergétique des échangeurs. La dernière voie consistera à utiliser les matériaux hydrophobes poreux développés dans les deux autres approches (sol-gel et carbone mésoporeux) pour mettre au point des surfaces biomimétiques "SLIPS" (Slippery Liquid Infused Porous Surface) à faible hystérèse d'angle de contact, qui présentent un fort potentiel pour des applications anti-encrassement. Tous les matériaux et surfaces développés seront testés dans des conditions semi-pilote de pasteurisation de dérivés laitiers et ovo-produits. La durabilité des matériaux prometteurs sera ensuite évaluée, au travers de procédures de nettoyage-en-place (Cleaning in place). Le mécanisme d'action des surfaces à la fois efficaces contre l'encrassement et durables sera évalué à l'échelle nanométrique et micrométrique. Enfin, l'impact environnemental et le gain potentiel de ces matériaux par rapport au procédé classique seront évalués à travers une analyse de cycle de vie du procédé de pasteurisation. Ce projet regroupe des membres de l'UMET de différentes tutelles (ULille, ENSCL et INRA), de l'IEMN, de la Fédération Chevreul, de l'ULorraine,de l'UPHF et d'Agrocampus Ouest.

 
European project H2020 : GEMMA for GEneration iv Materials MAturity

European project H2020 : GEMMA for GEneration iv Materials MAturity

2017-2021

The general objective of GEMMA Project is to qualify and codify the selected structural materials for the construction of Generation IV reactors, as envisaged within the European Sustainable Nuclear Industrial Initiative (ESNII). The contribution of UMET covers as well atomic scale simulation studies as mesoscopic scale experimental ones. The density functional theory is used to determine the necessary data required developing a kinetic model of Ni-Cr under thermal conditions and the effect of Fe as a dilute species will be then considered. Due to its recognized expertise in the field of liquid metal embrittlement of structural materials, UMET plans to investigate the mechanical behaviour of new alumina forming austenitic steels and of the 15-15Ti steel in liquid lead and in liquid lead-bismuth at temperatures up to 500°C.

 
ERC Advanced Grant FireBar-Concept, Multi-conceptual design of fire barrier, A systemic approach

ERC Advanced Grant FireBar-Concept, Multi-conceptual design of fire barrier, A systemic approach

2016-2021

The development of science and technology provides the availability of sophisticated products but concurrently, increases the use of combustible materials, in particular organic materials. Those materials are easily flammable and must be flame retarded to make them safer. In case of fire, people must be protected by materials confining and stopping fire. It is one of the goals of the FireBar-Concept project to design materials and assembly of materials exhibiting low flammability, protecting substrates and limiting fire spread. The objective of FireBar-Concept is to make a fire barrier formed at the right time, at the right location and reacting accordingly against thermal constraint (fire scenario).

 
ANR CAPSPIN - Implants anti-adhérents et antimicrobiens pour la chirurgie viscérale élaborés par plasma froid atmosphérique et electrospinning

ANR CAPSPIN - Implants anti-adhérents et antimicrobiens pour la chirurgie viscérale élaborés par plasma froid atmosphérique et electrospinning

2017-2021

The aim of CAPSPIN project is to combine and optimize through experimental design two eco-friendly processes for the elaboration of antiadhesive and antimicrobial biodegradable nanofibers coated onto intraperitoneal polypropylene implants. Electrospinning process is an innovative process used to produce biodegradable monolithic and core-sheath nanofibres. Atmospheric cold plasma technology is used for the activation and functionalization of different polymeric substrates at the extreme surface only.

 
ANR-DFG TIMEleSS - Phase TransformatIons, MicrostructurEs, and their Seismic Signals from the Earth's mantle

ANR-DFG TIMEleSS - Phase TransformatIons, MicrostructurEs, and their Seismic Signals from the Earth's mantle

2018-2021

The TIMEleSS project aims at studying interfaces in the Earth’s mantle combining observations from seismology, mineral physics experiments, microstructures, and wave propagation modeling. It is supported through a bilateral grant, from the ANR in France and the DFG in Germany with partners at Université de Lille, the Westfälische Wilhelms-Universität, Münster, and the Deutsche GeoForschungsZentrum, Potsdam.

 
Proteinolab

Proteinolab

2018-2021

Proteinolab : un laboratoire commun UMET-Ingredia dont la feuille de route est centrée sur le développement d’Isolat de protéines de lait différentiées optimisant la fonctionnalité des produits hyperprotéinés, en particulier des boissons nutritionnelles. Ces innovations produits et leurs pilotages passent entre autre par une meilleure compréhension des relations Structures et Fonctions des protéines.

 
ANR MADISON

ANR MADISON

2018-2021

MADISON is motivated by our lack of knowledge on the mechanical behavior of key rocks located in subduction zones, where tectonic plate meet. The mechanical strengths of these rocks play a major role on mass transfers at depths, and on shallow, human-impacting processes such as seismicity and volcanism. The rocks physical properties will be studied by three complementary approaches: in-situ experiments, numerical models and natural samples observations.

 
PYROCAT Equipe-Mixte / Etude du procédé de PYROlyse CATalytique de déchets Polymères

PYROCAT Equipe-Mixte / Etude du procédé de PYROlyse CATalytique de déchets Polymères

2017-2020

Depuis le 1er septembre 2017, des chercheurs de l’Institut Chevreul (Laboratoires UMET et UCCS) et des industriels de Néo-Eco et Valorplast travaillent ensemble au sein d’une équipe mixte intitulée PYROCAT. PYROCAT a pour objectif d’étudier la pyrolyse catalytique de déchets de polymères en vue de permettre une valorisation matière (retour aux monomères ou à des molécules d’intérêt pour la pétrochimie) ou une valorisation dans le domaine de l’énergie (retour à un pseudo-pétrole) de ces déchets. Les ambitions scientifiques de cette équipe mixte sont orientées autour de trois grands axes scientifiques : (i) le développement de matériaux catalytiques pour la pyrolyse de déchets polymères, (ii) l’étude multi-échelle du procédé de pyrolyse catalytique et (iii) l’analyse de l’impact environnemental du procédé. Cette équipe s’est structurée afin de répondre avec succès à l’appel à projet EMILE (Équipes mixtes Laboratoire-Entreprise) dans le cadre du Programme Opérationnel FEDER pour le Nord-Pas de Calais 2014-2020 (édition 2017). Elle est également labellisée par le pôle de compétitivité Team2.

 
CPER ARCHI-CM

CPER ARCHI-CM

2014-2020

L'UMET est impliqué dans le projet CPER ARCHI-CM, porté par la fédération Chevreul. Ce projet vise à répondre à des défis sociétaux, dans les domaines de la bio-économie, de la réponse aux défis énergétiques et des matériaux avancés. C’est un projet interdisciplinaire, dont la spécificité scientifique réside dans la combinaison des concepts d’architectures à la fois pour réaliser des matériaux innovants (assemblages de blocs fonctionnels, texturation multi-échelle, …) et pour induire des réactivités chimiques originales (milieux confinés, catalyseurs multifonctionnels,…).

 
Interreg_transport - Réseau TRANSfrontalier pour le développement de revêtements sol-gel POReux sur métaux pour applications Tribologiques

Interreg_transport - Réseau TRANSfrontalier pour le développement de revêtements sol-gel POReux sur métaux pour applications Tribologiques

2016-2020

Les secteurs du transport (aéronautique, aérospatial, ferroviaire, automobile, outillages, mécanique et sous-traitants) sont des secteurs très développés de part et d’autre de la zone frontalière. Pour ces secteurs, la qualité (longévité et fiabilité) des pièces métalliques est primordiale, celles-ci devant résister aux frottements, à l’usure, à la corrosion et à de fortes contraintes de températures. Les matériaux performants existants sont souvent onéreux, et ne répondent pas aux besoins des industriels car ils ne combinent pas la résistante à l’usure et à la corrosion. Dès lors, la demande du marché est très forte pour des pièces plus performantes, moins onéreuses, et qui seront résistantes à la fois aux phénomènes d’usures et de corrosion.Dans ce contexte, le projet vise à développer des revêtements céramiques poreux par voie sol gel déposés sur des substrats métalliques. Ces revêtements contiendront à la fois des lubrifiants (liquides ou solides) et des inhibiteurs de corrosion en vue d’obtenir des matériaux à haute performance, durables et résistants dans toutes les applications où les pièces métalliques sont soumises à des frottements et contraintes. Les principales actions du projet TRANSPORT seront de mettre en œuvre et tester ces pièces (où les revêtements sol gel à faible coefficient de frottement développés seront déposés), d’abord à l’échelle laboratoire, puis à l’échelle pilote, pour ensuite développer des solutions répondant aux attentes du marché via une démarche collaborative fortement orientée vers l’applicatif en associant dès le départ les partenaires industriels demandeurs.

 
ANR NanoPiC - Etude du comportement piézoélectrique multi-échelles de composites innovants micro- et nano-structurés

ANR NanoPiC - Etude du comportement piézoélectrique multi-échelles de composites innovants micro- et nano-structurés

2016-2020

Le projet NanoPiC a pour objectif de mener un programme de recherche et de développement de matériaux piézoélectriques innovants et ayant des propriétés améliorées, à partir de composites céramiques - polymère structurés. Il s’agit d’une part de fabriquer des composites comportant des domaines micro- et nano-structurés de céramiques non toxiques et de polymère fluoré et d’autre part de caractériser le comportement piézoélectrique aux échelles macroscopique et nanoscopique. La compréhension des comportements piézoélectriques de ces matériaux composites structurés est un enjeu scientifique fort et ouvre la voie à l'utilisation de ces matériaux pour des applications dans le domaine des pMUT (piezoelectric Micro machined Ultrasonic Transducers).

 
Interreg  Interreg Imode - Innovative Multicomponent Drug Design

Interreg Interreg Imode - Innovative Multicomponent Drug Design

2016-2020

A collaborative research on multicomponent pharmaceutical products (co-amorphous and co-crystals) and medical devices loaded with bioactive molecules. IMODE is funded by the European Interreg 2 Seas programme and cofinanced by the European Fund for Regional Development (ERFD).

 
RheoMan: a five-year, ERC-funded (Advanced Grant), project to model the rheology of the Earth's mantle

RheoMan: a five-year, ERC-funded (Advanced Grant), project to model the rheology of the Earth's mantle

2012-2018

The goal of RheoMan is to model the rheology of the Earth’s mantle from the properties of its constitutive minerals and rocks. It proposes a novel approach based on multiscale modelling of rheology. The goal of multiscale modelling is to link our understanding of a few elementary mechanisms (usually at the microscopic scale) with a behaviour observed at the macroscopic scale. In solids, plastic deformation results from the motion of crystal defects: point defects, dislocations, grain boundaries.

 
ANR STIC - Self-stratifying Intumescent Coatings

ANR STIC - Self-stratifying Intumescent Coatings

2014-2017

Replace the traditional (Primer/Coating/Topcoat) process by formulating a self-stratifying coating showing: adhesive properties to a substrate, good durability when submitted to accelerated aging tests, flame retardancy. Objectives: increase fire retardant effect on plastics (Polycarbonate), increase fire protective effect on steel structure.

 
 
UMET - Unité Matériaux et Transformations
CNRS UMR 8207
Université de Lille
Bâtiment C6
59655 Villeneuve d'Ascq
France
Version 2.0
Mentions Légales - Contacter le webmaster